On global behavior of solutions to an inverse problem for nonlinear parabolic equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
An inverse coefficient problem for a nonlinear parabolic variational inequality
This study is related to inverse coefficient problems for a nonlinear parabolic variational inequality with an unknown leading coefficient in the equation for the gradient of the solution. An inverse method, involving minimization of a least-squares cost functional, is developed to identify the unknown coefficient. It is proved that the solution of the corresponding direct problem depends conti...
متن کاملStability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations
Consider the Cauchy problem for the nonlinear hyperbolic-parabolic equation: (*) ut + 1 2 a · ∇xu = ∆u+ for t > 0, where a is a constant vector and u+ = max{u, 0}. The equation is hyperbolic in the region [u < 0] and parabolic in the region [u > 0]. It is shown that entropy solutions to (*), that grow at most linearly as |x| → ∞, are stable in a weighted L(IR ) space, which implies that the sol...
متن کاملBoundary Behavior of Solutions of Parabolic Equations
A boundary backward Harnack inequality is proved for positive solutions of second order parabolic equations in non-divergence form in a bounded cylinder Q = (0; T) which vanish on @ x Q = @ (0; T) ; where is a bounded Lipschitz domain in R n. This inequality is applied to the proof of the HH older continuity of the quotient of two positive solutions vanishing on a portion of @ x Q: 1. Introduct...
متن کاملAnalyticity of solutions to nonlinear parabolic equations on manifolds and an application to Stokes flow
We prove a general regularity result for fully nonlinear, possibly nonlocal parabolic Cauchy problems under the assumption of maximal regularity for the linearized problem. We apply this result to show joint spatial and temporal analyticity of the moving boundary in the problem of Stokes flow driven by surface tension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2005
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.01.007